Tutorial 4

February 16,2017

1. Discuss why there is no maximum principle for wave equation?

Consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\partial_{x}^{2} u=0, \quad-\infty<x<+\infty, \quad t>0 \\
u(x, t=0)=0, \quad \partial_{t} u(x, t=0)=\sin x, \quad-\infty<x<+\infty
\end{array}\right.
$$

And the unique solution is given by d'Alembert formula:

$$
u(x, t)=\frac{1}{2} \cos (x+t)-\cos (x-t)=-\sin x \sin t, \quad-\infty<x<\infty, t>0
$$

Then $u(x, t)$ attains its maximum 1 only at the interior points ($\left.\frac{\pi}{2} \pm 2 n \pi, \frac{3 \pi}{2}+2 n \pi\right)$ or $\left(\frac{3 \pi}{2} \pm 2 n \pi, \frac{\pi}{2}+2 n \pi\right)$ for $n=0,1,2, \cdots$. However, $u(x, t)=0$ on the boundary $\{(x, t): t=0\}$. Therefore there is no maximum principle for the Cauchy problem for the 1-dimensitonal wave equation.
Remark: The key is to find an counterexample.
2. Use the Green's function of the heat equation to show that the backward heat equation is not wellposed.
Note that $S(x, t)$ satisfies $u_{t}=k u_{x x}$ for any $t>0$, and $S(0, t) \rightarrow \infty$ as $t \rightarrow 0^{+}$. Then $u(x, t)=$ $S(x, t+1)$ solves $u_{t}=k u_{x x}$ for $t>-1$. Then $S(0, t) \rightarrow \infty$ as $t \rightarrow-1^{+}$, which implies that there is no solution for the backward heat equation with initial data $u(x, 0)=S(x, 1)=\frac{1}{\sqrt{4 k \pi}} e^{-\frac{x}{4 k}}$, hence the backward heat equation is not well-posed.
3. Let $\phi(x)$ be a continuous function such that $|\phi(x)| \leq C e^{a x^{2}}$. Show that formula (8) on page 48 for the solution of the diffusion equation makes sense for $0<t<\frac{1}{4 a k}$, but not necessarily for larger t.
Solution: Since

$$
\begin{aligned}
\left|e^{-(x-y)^{2} / 4 k t} \phi(y)\right| & \leq C e^{-(x-y)^{2} / 4 k t+a y^{2}}=C e^{\left(a-\frac{1}{4 k t}\right) y^{2}+\frac{x}{2 k t} y-\frac{x^{2}}{4 k t}}, \\
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) d y
\end{aligned}
$$

makes sense for $a-\frac{1}{4 k t}<0$, i.e. $0<t<1 /(4 a k)$, but not necessarily for large t, for example, $\phi(x)=e^{a x^{2}}$.
4. Use energy method to show that the energy for diffution eqution decays with a rate for large time.

Multiplying $\partial_{t} v=k \partial_{x}^{2} v$ by v and then integrating w.r.t x give that

$$
\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2}|v|^{2} d x=\int_{-\infty}^{\infty} k \partial_{x}^{2} v v d x
$$

It follows from integration by parts that

$$
\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2}|v|^{2} d x=\left.k \partial_{x} v v\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} k\left(\partial_{x} v\right)^{2} d x=-\int_{-\infty}^{\infty} k\left(\partial_{x} v\right)^{2} d x \leq 0
$$

for any $t \geq 0$. Here assume that v vanishes when $x \rightarrow \infty$. Hence if the solution is not a constant, $\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2}|v|^{2} d x<0$, then the energy $E=\int_{-\infty}^{\infty} \frac{1}{2}|v|^{2} d x$ decays as $t \rightarrow \infty$.

